Crossing the LINE Toward Genomic Instability: LINE-1 Retrotransposition in Cancer
نویسندگان
چکیده
Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises~17% of the human genome, remains active. The disruption of cellular mechanisms that suppress retrotransposon activity is linked to the generation of aneuploidy, a potential driver of tumor development. When retrotransposons insert into a novel genomic region, they have the potential to disrupt the coding sequence of endogenous genes and alter gene expression, which can lead to deleterious consequences for the organism. Additionally, increased LINE-1 copy numbers provide more chances for recombination events to occur between retrotransposons, which can lead to chromosomal breaks and rearrangements. LINE-1 activity is increased in various cancer cell lines and in patient tissues resected from primary tumors. LINE-1 activity also correlates with increased cancer metastasis. This review aims to give a brief overview of the connections between LINE-1 retrotransposition and the loss of genome stability. We will also discuss the mechanisms that repress retrotransposition in human cells and their links to cancer.
منابع مشابه
Nucleoside Analogue Reverse Transcriptase Inhibitors Differentially Inhibit Human LINE-1 Retrotransposition
BACKGROUND Intact LINE-1 elements are the only retrotransposons encoded by the human genome known to be capable of autonomous replication. Numerous cases of genetic disease have been traced to gene disruptions caused by LINE-1 retrotransposition events in germ-line cells. In addition, genomic instability resulting from LINE-1 retrotransposition in somatic cells has been proposed as a contributi...
متن کاملLINE Drive Retrotransposition and Genome Instability
The LINE-1 (L1) retrotransposon, the most important human mobile element, shapes the genome in many ways. Now two groups provide evidence that L1 retrotransposition is associated with large genomic deletions and inversions in transformed cells. If these events occur at a similar frequency in vivo, they have had a substantial effect on human genome evolution.
متن کاملHeavy Metals Stimulate Human LINE-1 Retrotransposition
L1 and Alu elements are among the most active retroposons (mobile elements) in the human genome. Several human diseases, including certain forms of breast cancer and leukemia, are associated with L1 and Alu insertions in functionally important areas of the genome. We present data demonstrating that environmental pollutants, such as heavy metals, can stimulate L1 retrotransposition in a tissue c...
متن کاملAPOBEC3DE Inhibits LINE-1 Retrotransposition by Interacting with ORF1p and Influencing LINE Reverse Transcriptase Activity
Human long interspersed elements 1 (LINE-1 or L1) is the only autonomous non-LTR retroelement in humans and has been associated with genome instability, inherited genetic diseases, and the development of cancer. Certain human APOBEC3 family proteins are known to have LINE-1 restriction activity. The mechanisms by which APOBEC3 affects LINE-1 retrotransposition are not all well characterized; he...
متن کاملActivation of human long interspersed nuclear element 1 retrotransposition by benzo(a)pyrene, an ubiquitous environmental carcinogen.
Long interspersed nuclear elements [LINE-1 (L1)] are abundant retrotransposons in mammalian genomes that remain silent under most conditions. Cellular stress signals activate L1, but the molecular mechanisms controlling L1 activation remain unclear. Evidence is presented here that benzo(a)pyrene (BaP), an environmental hydrocarbon metabolized by mammalian cytochrome P450s to reactive carcinogen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2015